国产黄色毛片-国产黄色毛片视频-国产黄色片91-国产黄色片一级-一级坐爱片-一级免费

淺論分子生物學(xué)研究論文

所屬欄目:生物醫(yī)學(xué)工程論文 發(fā)布日期:2013-11-12 13:41 熱度:

   分子生物學(xué)是從分子水平研究生命本質(zhì)為目的的一門新興邊緣學(xué)科,它以核酸和蛋白質(zhì)等生物大分子的結(jié)構(gòu)及其在遺傳信息和細(xì)胞信息傳遞中的作用為研究對(duì)象,是當(dāng)前生命科學(xué)中發(fā)展最快并正在與其它學(xué)科廣泛交叉與滲透的重要前沿領(lǐng)域。分子生物學(xué)的發(fā)展為人類認(rèn)識(shí)生命現(xiàn)象帶來(lái)了前所未有的機(jī)會(huì),也為人類利用和改造生物創(chuàng)造了極為廣闊的前景。

  所謂在分子水平上研究生命的本質(zhì)主要是指對(duì)遺傳、生殖、生長(zhǎng)和發(fā)育等生命基本特征的分子機(jī)理的闡明,從而為利用和改造生物奠定理論基礎(chǔ)和提供新的手段。這里的分子水平指的是那些攜帶遺傳信息的核酸和在遺傳信息傳遞及細(xì)胞內(nèi)、細(xì)胞間通訊過程中發(fā)揮著重要作用的蛋白質(zhì)等生物大分子。這些生物大分子均具有較大的分子量,由簡(jiǎn)單的小分子核苷酸或氨基酸排列組合以蘊(yùn)藏各種信息,并且具有復(fù)雜的空間結(jié)構(gòu)以形成精確的相互作用系統(tǒng),由此構(gòu)成生物的多樣化和生物個(gè)體精確的生長(zhǎng)發(fā)育和代謝調(diào)節(jié)控制系統(tǒng)。闡明這些復(fù)雜的結(jié)構(gòu)及結(jié)構(gòu)與功能的關(guān)系是分子生物學(xué)的主要任務(wù)。

  發(fā)展歷史:

  一、準(zhǔn)備和醞釀階段

  19世紀(jì)后期到20世紀(jì)50年代初,是現(xiàn)代分子生物學(xué)誕生的準(zhǔn)備和醞釀階段。在這一階段產(chǎn)生了兩點(diǎn)對(duì)生命本質(zhì)的認(rèn)識(shí)上的重大突破:

  確定了蛋白質(zhì)是生命的主要基礎(chǔ)物質(zhì)

  19世紀(jì)末Buchner兄弟證明酵母無(wú)細(xì)胞提取液能使糖發(fā)酵產(chǎn)生酒精,第一次提出酶(enzyme)的名稱,酶是生物催化劑。20世紀(jì)20-40年代提純和結(jié)晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黃酶、細(xì)胞色素C、肌動(dòng)蛋白等),證明酶的本質(zhì)是蛋白質(zhì)。隨后陸續(xù)發(fā)現(xiàn)生命的許多基本現(xiàn)象(物質(zhì)代謝、能量代謝、消化、呼吸、運(yùn)動(dòng)等)都與酶和蛋白質(zhì)相聯(lián)系,可以用提純的酶或蛋白質(zhì)在體外實(shí)驗(yàn)中重復(fù)出來(lái)。在此期間對(duì)蛋白質(zhì)結(jié)構(gòu)的認(rèn)識(shí)也有較大的進(jìn)步。1902年EmilFisher證明蛋白質(zhì)結(jié)構(gòu)是多肽;40年代末,Sanger創(chuàng)立二硝基氟苯(DNFB)法、Edman發(fā)展異硫氰酸苯酯法分析肽鏈N端氨基酸;1953年Sanger和Thompson完成了第一個(gè)多肽分子--胰島素A鏈和B鏈的氨基全序列分析。由于結(jié)晶X-線衍射分析技術(shù)的發(fā)展,1950年P(guān)auling和Corey提出了α-角蛋白的α-螺旋結(jié)構(gòu)模型。所以在這階段對(duì)蛋白質(zhì)一級(jí)結(jié)構(gòu)和空間結(jié)構(gòu)都有了認(rèn)識(shí)。

  確定了生物遺傳的物質(zhì)基礎(chǔ)是DNA

  雖然1868年F.Miescher就發(fā)現(xiàn)了核素(nuclein),但是在此后的半個(gè)多世紀(jì)中并未引起重視。20世紀(jì)20-30年代已確認(rèn)自然界有DNA和RNA兩類核酸,并闡明了核苷酸的組成。由于當(dāng)時(shí)對(duì)核苷酸和鹼基的定量分析不夠精確,得出DNA中A、G、C、T含量是大致相等的結(jié)果,因而曾長(zhǎng)期認(rèn)為DNA結(jié)構(gòu)只是“四核苷酸”單位的重復(fù),不具有多樣性,不能攜帶更多的信息,當(dāng)時(shí)對(duì)攜帶遺傳信息的侯選分子更多的是考慮蛋白質(zhì)。40年代以后實(shí)驗(yàn)的事實(shí)使人們對(duì)酸的功能和結(jié)構(gòu)兩方面的認(rèn)識(shí)都有了長(zhǎng)足的進(jìn)步。1944年O.T.Avery等證明了肺炎球菌轉(zhuǎn)化因子是DNA;1952年A.D.Hershey和M.Cha-se用DNA35S和32P分別標(biāo)記T2噬菌體的蛋白質(zhì)和核酸,感染大腸桿菌的實(shí)驗(yàn)進(jìn)一步證明了是遺傳物質(zhì)。在對(duì)DNA結(jié)構(gòu)的研究上,1949-52年S.Furbery等的X-線衍射分析闡明了核苷酸并非平面的空間構(gòu)像,提出了DNA是螺旋結(jié)構(gòu);1948-1953年Chargaff等用新的層析和電泳技術(shù)分析組成DNA的鹼基和核苷酸量,積累了大量的數(shù)據(jù),提出了DNA鹼基組成A=T、G=C的Chargaff規(guī)則,為鹼基配對(duì)的DNA結(jié)構(gòu)認(rèn)識(shí)打下了基礎(chǔ)。

  二、現(xiàn)代分子生物學(xué)的建立和發(fā)展階段

  這一階段是從50年代初到70年代初,以1953年Watson和Crick提出的DNA雙螺旋結(jié)構(gòu)模型作為現(xiàn)代分子生物學(xué)誕生的里程碑開創(chuàng)了分子遺傳學(xué)基本理論建立和發(fā)展的黃金時(shí)代。DNA雙螺旋發(fā)現(xiàn)的最深刻意義在于:確立了核酸作為信息分子的結(jié)構(gòu)基礎(chǔ);提出了鹼基配對(duì)是核酸復(fù)制、遺傳信息傳遞的基本方式;從而最后確定了核酸是遺傳的物質(zhì)基礎(chǔ),為認(rèn)識(shí)核酸與蛋白質(zhì)的關(guān)系及其在生命中的作用打下了最重要的基礎(chǔ)。在此期間的主要進(jìn)展包括:

  遺傳信息傳遞中心法則的建立

  在發(fā)現(xiàn)DNA雙螺旋結(jié)構(gòu)同時(shí),Watson和Crick就提出DNA復(fù)制的可能模型。其后在1956年A.Kornbery首先發(fā)現(xiàn)DNA聚合酶;1958年Meselson及Stahl用同位素標(biāo)記和超速離心分離實(shí)驗(yàn)為DNA半保留模型提出了證明;1968年Okazaki(岡畸)提出DNA不連續(xù)復(fù)制模型;1972年證實(shí)了DNA復(fù)制開始需要RNA作為引物;70年代初獲得DNA拓?fù)洚悩?gòu)酶,并對(duì)真核DNA聚合酶特性做了分析研究;這些都逐漸完善了對(duì)DNA復(fù)制機(jī)理的認(rèn)識(shí)。

  在發(fā)現(xiàn)DNA雙螺旋結(jié)構(gòu)同時(shí),Watson和Crick就提出DNA復(fù)制的可能模型。其后在1956年A.Kornbery首先發(fā)現(xiàn)DNA聚合酶;1958年Meselson及Stahl用同位素標(biāo)記和超速離心分離實(shí)驗(yàn)為DNA半保留模型提出了證明;1968年Okazaki(岡畸)提出DNA不連續(xù)復(fù)制模型;1972年證實(shí)了DNA復(fù)制開始需要RNA作為引物;70年代初獲得DNA拓?fù)洚悩?gòu)酶,并對(duì)真核DNA聚合酶特性做了分析研究;這些都逐漸完善了對(duì)DNA復(fù)制機(jī)理的認(rèn)識(shí)。

  在研究DNA復(fù)制將遺傳信息傳給子代的同時(shí),提出了RNA在遺傳信息傳到蛋白質(zhì)過程中起著中介作用的假說(shuō)。1958年Weiss及Hurwitz等發(fā)現(xiàn)依賴于DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA雜交證明mRNA與DNA序列互補(bǔ);逐步闡明了RNA轉(zhuǎn)錄合成的機(jī)理。

  在此同時(shí)認(rèn)識(shí)到蛋白質(zhì)是接受RNA的遺傳信息而合成的。50年代初Zamecnik等在形態(tài)學(xué)和分離的亞細(xì)胞組分實(shí)驗(yàn)中已發(fā)現(xiàn)微粒體(microsome)是細(xì)胞內(nèi)蛋白質(zhì)合成的部位;1957年Hoagland、Zamecnik及Stephenson等分離出tRNA并對(duì)它們?cè)诤铣傻鞍踪|(zhì)中轉(zhuǎn)運(yùn)氨基酸的功能提出了假設(shè);1961年Brenner及Gross等觀察了在蛋白質(zhì)合成過程中mRNA與核糖體的結(jié)合;1965年Holley首次測(cè)出了酵母丙氨酸t(yī)RNA的一級(jí)結(jié)構(gòu);特別是在60年代Nirenberg、Ochoa以及Khorana等幾組科學(xué)家的共同努力破譯了RNA上編碼合成蛋白質(zhì)的遺傳密碼,隨后研究表明這套遺傳密碼在生物界具有通用性,從而認(rèn)識(shí)了蛋白質(zhì)翻譯合成的基本過程。

  上述重要發(fā)現(xiàn)共同建立了以中心法則為基礎(chǔ)的分子遺傳學(xué)基本理論體系。1970年Temin和Baltimore又同時(shí)從雞肉瘤病毒顆粒中發(fā)現(xiàn)以RNA為模板合成DNA的反轉(zhuǎn)錄酶,又進(jìn)一步補(bǔ)充和完善了遺傳信息傳遞的中心法則。

  對(duì)蛋白質(zhì)結(jié)構(gòu)與功能的進(jìn)一步認(rèn)識(shí)

  1956-58年Anfinsen和White根據(jù)對(duì)酶蛋白的變性和復(fù)性實(shí)驗(yàn),提出蛋白質(zhì)的三維空間結(jié)構(gòu)是由其氨基酸序列來(lái)確定的。1958年Ingram證明正常的血紅蛋白與鐮刀狀細(xì)胞溶血癥病人的血紅蛋白之間,亞基的肽鏈上僅有一個(gè)氨基酸殘基的差別,使人們對(duì)蛋白質(zhì)一級(jí)結(jié)構(gòu)影響功能有了深刻的印象。與此同時(shí),對(duì)蛋白質(zhì)研究的手段也有改進(jìn),1969年Weber開始應(yīng)用SDS-聚丙烯酰胺凝膠電泳測(cè)定蛋白質(zhì)分子量;60年代先后分析得血紅蛋白、核糖核酸酶A等一批蛋白質(zhì)的一級(jí)結(jié)構(gòu);1973年氨基酸序列自動(dòng)測(cè)定儀問世。中國(guó)科學(xué)家在1965年人工合成了牛胰島素;在1973年用1.8AX-線衍射分析法測(cè)定了牛胰島素的空間結(jié)構(gòu),為認(rèn)識(shí)蛋白質(zhì)的結(jié)構(gòu)做出了重要貢

  獻(xiàn)。

  三、初步認(rèn)識(shí)生命本質(zhì)并開始改造生命的深入發(fā)展階段

  70年代后,以基因工程技術(shù)的出現(xiàn)作為新的里程碑,標(biāo)志著人類深入認(rèn)識(shí)生命本質(zhì)并能動(dòng)改造生命的新時(shí)期開始。其間的重大成就包括:

  1.重組DNA技術(shù)的建立和發(fā)展

  分子生物學(xué)理論和技術(shù)發(fā)展的積累使得基因工程技術(shù)的出現(xiàn)成為必然。1967-1970年R.Yuan和H.O.Smith等發(fā)現(xiàn)的限制性核酸內(nèi)切酶為基因工程提供了有力的工具; 1972年Berg等將SV-40病毒DNA與噬菌體P22DNA在體外重組成功,轉(zhuǎn)化大腸桿菌,使本來(lái)在真核細(xì)胞中合成的蛋白質(zhì)能在細(xì)菌中合成,打破了種屬界限;1977年Boyer等首先將人工合成的生長(zhǎng)激素釋放抑制因子14肽的基因重組入質(zhì)粒,成功地在大腸桿菌中合成得到這14肽;1978年Itakura(板倉(cāng))等使人生長(zhǎng)激素191肽在大腸桿菌中表達(dá)成功;1979年美國(guó)基因技術(shù)公司用人工合成的人胰島素基因重組轉(zhuǎn)入大腸桿菌中合成人胰島素。至今我國(guó)已有人干擾素、人白介素2、人集落刺激因子、重組人乙型肝炎疫苗、基因工程幼畜腹瀉疫苗等多種基因工程藥物和疫苗進(jìn)入生產(chǎn)或臨床試用,世界上還有幾百種基因工程藥物及其它基因工程產(chǎn)品在研制中,成為當(dāng)今農(nóng)業(yè)和醫(yī)藥業(yè)發(fā)展的重要方向,將對(duì)醫(yī)學(xué)和工農(nóng)業(yè)發(fā)展作出新貢獻(xiàn)。

  轉(zhuǎn)基因動(dòng)植物和基因剔除動(dòng)植物的成功是基因工程技術(shù)發(fā)展的結(jié)果。1982年P(guān)almiter等將克隆的生長(zhǎng)激素基因?qū)胄∈笫芫鸭?xì)胞核內(nèi),培育得到比原小鼠個(gè)體大幾倍的“巨鼠”,激起了人們創(chuàng)造優(yōu)良品系家畜的熱情。我國(guó)水生生物研究所將生長(zhǎng)激素基因轉(zhuǎn)入魚受精卵,得到的轉(zhuǎn)基因魚的生長(zhǎng)顯著加快、個(gè)體增大;轉(zhuǎn)基因豬也正在研制中。用轉(zhuǎn)基因動(dòng)物還能獲取治療人類疾病的重要蛋白質(zhì),導(dǎo)入了凝血因子Ⅸ基因的轉(zhuǎn)基因綿羊分泌的乳汁中含有豐富的凝血因子Ⅸ,能有效地用于血友病的治療。在轉(zhuǎn)基因植物方面,1994年能比普通西紅柿保鮮時(shí)間更長(zhǎng)的轉(zhuǎn)基因西紅柿投放市場(chǎng),1996年轉(zhuǎn)基因玉米、轉(zhuǎn)基因大豆相繼投入商品生產(chǎn),美國(guó)最早研制得到抗蟲棉花,我國(guó)科學(xué)家將自己發(fā)現(xiàn)的蛋白酶抑制劑基因轉(zhuǎn)入棉花獲得抗棉鈴蟲的棉花株。到1996年全世界已有250萬(wàn)公頃土地種植轉(zhuǎn)基因植物。

  基因診斷與基因治療是基因工程在醫(yī)學(xué)領(lǐng)域發(fā)展的一個(gè)重要方面。1991年美國(guó)向一患先天性免疫缺陷病(遺傳性腺苷脫氨酶ADA基因缺陷)的女孩體內(nèi)導(dǎo)入重組的ADA基因,獲得成功。我國(guó)也在1994年用導(dǎo)入人凝血因子Ⅸ基因的方法成功治療了乙型血友病的患者。在我國(guó)用作基因診斷的試劑盒已有近百種之多;蛟\斷和基因治療正在發(fā)展之中。

  這時(shí)期基因工程的迅速進(jìn)步得益于許多分子生物學(xué)新技術(shù)的不斷涌現(xiàn)。包括:核酸的化學(xué)合成從手工發(fā)展到全自動(dòng)合成,1975-1977年Sanger、Maxam和Gilbert先后發(fā)明了三種DNA序列的快速測(cè)定法;90年代全自動(dòng)核酸序列測(cè)定儀的問世;1985年Cetus公司Mullis等發(fā)明的聚合酶鏈?zhǔn)椒磻?yīng)(PCR)的特定核酸序列擴(kuò)增技術(shù),更以其高靈敏度和特異性被廣泛應(yīng)用,對(duì)分子生物學(xué)的發(fā)展起到了重大的推動(dòng)作用。

  2.基因組研究的發(fā)展

  目前分子生物學(xué)已經(jīng)從研究單個(gè)基因發(fā)展到研究生物整個(gè)基因組的結(jié)構(gòu)與功能。1977年Sanger測(cè)定了ΦX174-DNA全部5375個(gè)核苷酸的序列;1978年Fiers等測(cè)出SV-40DNA全部5224對(duì)鹼基序列;80年代λ噬菌體DNA全部48,502鹼基對(duì)的序列全部測(cè)出;一些小的病毒包括乙型肝炎病毒、艾滋病毒等基因組的全序列也陸續(xù)被測(cè)定;1996年底許多科學(xué)家共同努力測(cè)出了大腸桿菌基因組DNA的全序列長(zhǎng)4x106鹼基對(duì)。測(cè)定一個(gè)生物基因組核酸的全序列無(wú)疑對(duì)理解這一生物的生命信息及其功能有極大的意義。1990年人類基因組計(jì)劃(HumanGenomeProject)開始實(shí)施,這是生命科學(xué)領(lǐng)域有史以來(lái)全球性最龐大的研究計(jì)劃,將在2005年時(shí)測(cè)定出人基因組全部DNA3x109鹼基對(duì)的序列、確定人類約5-10萬(wàn)個(gè)基因的一級(jí)結(jié)構(gòu),這將使人類能夠更好掌握自己的命運(yùn)。

  3.單克隆抗體及基因工程抗體的建立和發(fā)展

  1975年Kohler和Milstein首次用B淋巴細(xì)胞雜交瘤技術(shù)制備出單克隆抗體以來(lái),人們利用這一細(xì)胞工程技術(shù)研制出多種單克隆抗體,為許多疾病的診斷和治療提供了有效的手段。80年代以后隨著基因工程抗體技術(shù)而相繼出現(xiàn)的單域抗體、單鏈抗體、嵌合抗體、重構(gòu)抗體、雙功能抗體等為廣泛和有效的應(yīng)用單克隆抗體提供了廣闊的前景。

  4.基因表達(dá)調(diào)控機(jī)理

  分子遺傳學(xué)基本理論建立者Jacob和Monod最早提出的操縱元學(xué)說(shuō)打開了人類認(rèn)識(shí)基因表達(dá)調(diào)控的窗口,在分子遺傳學(xué)基本理論建立的60年代,人們主要認(rèn)識(shí)了原核生物基因表達(dá)調(diào)控的一些規(guī)律,70年代以后才逐漸認(rèn)識(shí)了真核基因組結(jié)構(gòu)和調(diào)控的復(fù)雜性。1977年最先發(fā)現(xiàn)猴SV40病毒和腺病毒中編碼蛋白質(zhì)的基因序列是不連續(xù)的,這種基因內(nèi)部的間隔區(qū)(內(nèi)含子)在真核基因組中是普遍存在的,揭開了認(rèn)識(shí)真核基因組結(jié)構(gòu)和調(diào)控的序幕。1981年Cech等發(fā)現(xiàn)四膜蟲rRNA的自我剪接,從而發(fā)現(xiàn)核酶(ribozyme)。80-90年代,使人們逐步認(rèn)識(shí)到真核基因的順式調(diào)控元件與反式轉(zhuǎn)錄因子、核酸與蛋白質(zhì)間的分子識(shí)別與相互作用是基因表達(dá)調(diào)控根本所在。

  分子遺傳學(xué)基本理論建立者Jacob和Monod最早提出的操縱元學(xué)說(shuō)打開了人類認(rèn)識(shí)基因表達(dá)調(diào)控的窗口,在分子遺傳學(xué)基本理論建立的60年代,人們主要認(rèn)識(shí)了原核生物基因表達(dá)調(diào)控的一些規(guī)律,70年代以后才逐漸認(rèn)識(shí)了真核基因組結(jié)構(gòu)和調(diào)控的復(fù)雜性。1977年最先發(fā)現(xiàn)猴SV40病毒和腺病毒中編碼蛋白質(zhì)的基因序列是不連續(xù)的,這種基因內(nèi)部的間隔區(qū)(內(nèi)含子)在真核基因組中是普遍存在的,揭開了認(rèn)識(shí)真核基因組結(jié)構(gòu)和調(diào)控的序幕。1981年Cech等發(fā)現(xiàn)四膜蟲rRNA的自我剪接,從而發(fā)現(xiàn)核酶(ribozyme)。80-90年代,使人們逐步認(rèn)識(shí)到真核基因的順式調(diào)控元件與反式轉(zhuǎn)錄因子、核酸與蛋白質(zhì)間的分子識(shí)別與相互作用是基因表達(dá)調(diào)控根本所在。

  5.細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)機(jī)理研究成為新的前沿領(lǐng)域

  細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)機(jī)理的研究可以追述至50年代。Sutherland1957年發(fā)現(xiàn)cAMP、1965年提出第二信使學(xué)說(shuō),是人們認(rèn)識(shí)受體介導(dǎo)的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的第一個(gè)里程碑。1977年Ross等用重組實(shí)驗(yàn)證實(shí)G蛋白的存在和功能,將G蛋白與腺苷環(huán)化酶的作用相聯(lián)系起來(lái),深化了對(duì)G蛋白偶聯(lián)信號(hào)轉(zhuǎn)導(dǎo)途徑的認(rèn)識(shí)。70年代中期以后,癌基因和抑癌基因的發(fā)現(xiàn)、蛋白酪氨酸激酶的發(fā)現(xiàn)及其結(jié)構(gòu)與功能的深入研究、各種受體蛋白基因的克隆和結(jié)構(gòu)功能的探索等,使近10年來(lái)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的研究更有了長(zhǎng)足的進(jìn)步。目前,對(duì)于某些細(xì)胞中的一些信號(hào)轉(zhuǎn)導(dǎo)途徑已經(jīng)有了初步的認(rèn)識(shí),尤其是在免疫活性細(xì)胞對(duì)抗原的識(shí)別及其活化信號(hào)的傳遞途徑方面和細(xì)胞增殖控制方面等都形成了一些基本的概念,當(dāng)然要達(dá)到最終目標(biāo)還需相當(dāng)長(zhǎng)時(shí)間的努力。

  以上簡(jiǎn)要介紹了分子生物學(xué)的發(fā)展過程,可以看到在近半個(gè)世紀(jì)中它是生命科學(xué)范圍發(fā)展最為迅速的一個(gè)前沿領(lǐng)域,推動(dòng)著整個(gè)生命科學(xué)的發(fā)展。至今分子生物學(xué)仍在迅速發(fā)展中,新成果、新技術(shù)不斷涌現(xiàn),這也從另一方面說(shuō)明分子生物學(xué)發(fā)展還處在初級(jí)階段。分子生物學(xué)已建立的基本規(guī)律給人們認(rèn)識(shí)生命的本質(zhì)指出了光明的前景,但分子生物學(xué)的歷史還短,積累的資料還不夠,例如:在地球上千姿萬(wàn)態(tài)的生物攜帶龐大的生命信息,迄今人類所了解的只是極少的一部分,還未認(rèn)識(shí)核酸、蛋白質(zhì)組成生命的許多基本規(guī)律;又如即使到2005年我們已經(jīng)獲得人類基因組DNA3x109bp的全序列,確定了人的5-10萬(wàn)個(gè)基因的一級(jí)結(jié)構(gòu),但是要徹底搞清楚這些基因產(chǎn)物的功能、調(diào)控、基因間的相互關(guān)系和協(xié)調(diào),要理解80%以上不為蛋白質(zhì)編碼的序列的作用等等,都還要經(jīng)歷漫長(zhǎng)的研究道路?梢哉f(shuō)分子生物學(xué)的發(fā)展前景光輝燦爛,道路還會(huì)艱難曲折。

  分子生物學(xué)主要包含以下三部分研究?jī)?nèi)容:

  1.核酸的分子生物學(xué)

  核酸的分子生物學(xué)研究核酸的結(jié)構(gòu)及其功能。由于核酸的主要作用是攜帶和傳遞遺傳信息,因此分子遺傳學(xué)(moleculargenetics)是其主要組成部分。由于50年代以來(lái)的迅速發(fā)展,該領(lǐng)域已形成了比較完整的理論體系和研究技術(shù),是目前分子生物學(xué)內(nèi)容最豐富的一個(gè)領(lǐng)域。研究?jī)?nèi)容包括核酸/基因組的結(jié)構(gòu)、遺傳信息的復(fù)制、轉(zhuǎn)錄與翻譯,核酸存儲(chǔ)的信息修復(fù)與突變,基因表達(dá)調(diào)控和基因工程技術(shù)的發(fā)展和應(yīng)用等。遺傳信息傳遞的中心法則(centraldogma)是其理論體系的核心。

  2.蛋白質(zhì)的分子生物學(xué)

  蛋白質(zhì)的分子生物學(xué)研究執(zhí)行各種生命功能的主要大分子──蛋白質(zhì)的結(jié)構(gòu)與功能。盡管人類對(duì)蛋白質(zhì)的研究比對(duì)核酸研究的歷史要長(zhǎng)得多,但由于其研究難度較大,與核酸分子生物學(xué)相比發(fā)展較慢。近年來(lái)雖然在認(rèn)識(shí)蛋白質(zhì)的結(jié)構(gòu)及其與功能關(guān)系方面取得了一些進(jìn)展,但是對(duì)其基本規(guī)律的認(rèn)識(shí)尚缺乏突破性的進(jìn)展。

  3.細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的分子生物學(xué)

  細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的分子生物學(xué)研究細(xì)胞內(nèi)、細(xì)胞間信息傳遞的分子基礎(chǔ)。構(gòu)成生物體的每一個(gè)細(xì)胞的分裂與分化及其它各種功能的完成均依賴于外界環(huán)境所賦予的各種指示信號(hào)。在這些外源信號(hào)的刺激下,細(xì)胞可以將這些信號(hào)轉(zhuǎn)變?yōu)橐幌盗械纳锘瘜W(xué)變化,例如蛋白質(zhì)構(gòu)象的轉(zhuǎn)變、蛋白質(zhì)分子的磷酸化以及蛋白與蛋白相互作用的變化等,從而使其增殖、分化及分泌狀態(tài)等發(fā)生改變以適應(yīng)內(nèi)外環(huán)境的需要。信號(hào)轉(zhuǎn)導(dǎo)研究的目標(biāo)是闡明這些變化的分子機(jī)理,明確每一種信號(hào)轉(zhuǎn)導(dǎo)與傳遞的途徑及參與該途徑的所有分子的作用和調(diào)節(jié)方式以及認(rèn)識(shí)各種途徑間的網(wǎng)絡(luò)控制系統(tǒng)。信號(hào)轉(zhuǎn)導(dǎo)機(jī)理的研究在理論和技術(shù)方面與上述核酸及蛋白質(zhì)分子有著緊密的聯(lián)系,是當(dāng)前分子生物學(xué)發(fā)展最迅速的領(lǐng)域之一。

  與其他學(xué)科的關(guān)系

  分子生物學(xué)是由生物化學(xué)、生物物理學(xué)、遺傳學(xué)、微生物學(xué)、細(xì)胞學(xué)、以至信息科學(xué)等多學(xué)科相互滲透、綜合融會(huì)而產(chǎn)生并發(fā)展起來(lái)的,凝聚了不同學(xué)科專長(zhǎng)的科學(xué)家的共同努力。它雖產(chǎn)生于上述各個(gè)學(xué)科,但已形成它獨(dú)特的理論體系和研究手段,成為一個(gè)獨(dú)立的學(xué)科。

  生物化學(xué)與分子生物學(xué)關(guān)系最為密切。兩者同在我國(guó)教委和科委頒布的一個(gè)二級(jí)學(xué)科中,稱為“生物化學(xué)與分子生物學(xué)”,但兩者還是有區(qū)別的。生物化學(xué)是從化學(xué)角度研究生命現(xiàn)象的科學(xué),它著重研究生物體內(nèi)各種生物分子的結(jié)構(gòu)、轉(zhuǎn)變與新陳代謝。傳統(tǒng)生物化學(xué)的中心內(nèi)容是代謝,包括糖、脂類、氨基酸、核苷酸、以及能量代謝等與生理功能的聯(lián)系。分子生物學(xué)則著重闡明生命的本質(zhì)----主要研究生物大分子核酸與蛋白質(zhì)的結(jié)構(gòu)與功能、生命信息的傳遞和調(diào)控!秶(guó)際生物化學(xué)學(xué)會(huì)》和 《中國(guó)生物化學(xué)學(xué)會(huì)》現(xiàn)均已改名為《國(guó)際生物化學(xué)與分子生物學(xué)學(xué)會(huì)》和《中國(guó)生物化學(xué)與分子生物學(xué)學(xué)會(huì)》。

  細(xì)胞生物學(xué)與分子生物學(xué)關(guān)系也十分密切。傳統(tǒng)的細(xì)胞生物學(xué)主要研究細(xì)胞和亞細(xì)胞器的形態(tài)、結(jié)構(gòu)與功能。細(xì)胞作為生物體基本的構(gòu)成單位是由許多分子組成的復(fù)雜體系,光學(xué)顯微鏡和電子顯微鏡下所見到的規(guī)則結(jié)構(gòu)是各種分子有序結(jié)合而形成的。探討組成細(xì)胞的分子結(jié)構(gòu)比單純觀察大體結(jié)構(gòu)能更加深入認(rèn)識(shí)細(xì)胞的結(jié)構(gòu)與功能,因此現(xiàn)代細(xì)胞生物學(xué)的發(fā)展越來(lái)越多地應(yīng)用分子生物學(xué)的理論和方法。分子生物學(xué)則是從研究各個(gè)生物大分子的結(jié)構(gòu)入手,但各個(gè)分子不能孤立發(fā)揮作用,生命絕非組成成分的隨意加和或混合,分子生物學(xué)還需要進(jìn)一步研究各生物分子間的高層次組織和相互作用,尤其是細(xì)胞整體反應(yīng)的分子機(jī)理,這在某種程度上是向細(xì)胞生物學(xué)的靠攏。分子細(xì)胞學(xué)或細(xì)胞分子生物學(xué)就因此而產(chǎn)生,成為人們認(rèn)識(shí)生命的基礎(chǔ)。

  由于分子生物學(xué)涉及認(rèn)識(shí)生命的本質(zhì),它也就自然廣泛的滲透到醫(yī)學(xué)各學(xué)科領(lǐng)域中,成為現(xiàn)代醫(yī)學(xué)重要的基礎(chǔ)。在醫(yī)學(xué)各個(gè)學(xué)科中,包括生理學(xué)、微生物學(xué)、免疫學(xué)、病理學(xué)、藥理學(xué)以及臨床各學(xué)科分子生物學(xué)都正在廣泛地形成交叉與滲透,形成了一些交叉學(xué)科,如分子免疫學(xué)、分子病毒學(xué)、分子病理學(xué)和分子藥理學(xué)等,大大促進(jìn)了醫(yī)學(xué)的發(fā)展。

文章標(biāo)題:淺論分子生物學(xué)研究論文

轉(zhuǎn)載請(qǐng)注明來(lái)自:http://m.optiwork.cn/fblw/dianxin/shengwuyixue/19583.html

相關(guān)問題解答

SCI服務(wù)

搜論文知識(shí)網(wǎng) 冀ICP備15021333號(hào)-3

主站蜘蛛池模板: 精品国产一区二区三区在线 | 欧美深夜影院 | 亚洲视频一区二区在线观看 | 亚洲精品国产福利一区二区三区 | 日韩美女视频一区 | 99久久国产免费 - 99久久国产免费 | 久青草国产手机在线观 | 久艹视频在线免费观看 | 最新国产精品亚洲二区 | 99久久综合精品国产 | 依人久久| 日韩中文字幕网 | 色播亚洲 | 国产精品一一在线观看 | 玖玖香蕉视频 | 国产综合成人亚洲区 | 美女舒服好紧太爽了视频 | 国产成人精品久久一区二区小说 | 国内偷自第一二三区 | 亚洲人成网站在线观看播放 | 夜精品a一区二区三区 | 久草免费在线 | 成年午夜性爽快免费视频不卡 | 三级三级三级全黄 | 久久久精品国产免费观看同学 | 麻豆国产 | 国产成人国产在线观看入口 | 久久一区二区三区免费播放 | 国产一区二区三区亚洲欧美 | 亚洲福利影院 | 99视频在线免费 | 欧美xxxx色视频在线观看 | 精品国产一区二区三区成人 | 久久精品国产一区二区三区日韩 | 亚洲精品在线免费看 | 国产一区2区| 一级a俄罗斯毛片免费 | www.自拍| 色黄啪啪18周岁以下禁止观看 | 黄色美女视频 | a级毛片无码免费真人 |